
Nom : Prénom : Classe :

NSI 1re — Opérateurs logiques

Éléments du programme : Représentation des données - types et valeurs de base →Valeurs booléennes (0 =
False, 1 = True). Opérateurs booléens (and, or, not, xor). Table d'une expression booléenne.

Opérateurs logiques

Un opérateur logique sert à relier plusieurs affirmations entre elles. Prenons un exemple :

← ici l'affirmation est composée des
deux "sous-affirmations" age < 18
mais aussi jour == 'dimanche' .

Ces deux "sous-affirmations" sont liées
entre elles par l'opérateur logique et .

L'exemple schématisé ci-dessus peut être transcrit en Python de la façon suivante :

1

2

3

if age < 18 and jour == 'dimanche':

 print('tarif réduit')

print('fin du programme')

Voici une explication du programme, ligne par ligne :

Ligne Explication

1 Condition dans laquelle l'affirmation est :
- La valeur de la variable age est inférieure à la valeur 18
ET
- La valeur de la variable jour vaut dimanche

2 Instruction (bloc de code) qui sera exécutée, si l'affirmation est vraie.

3 Cette instruction ne fait pas partie de la condition.
Elle sera donc exécutée quoi qu'il arrive.

Liste des opérateurs logiques

Opérateur logique Description

AND L'affirmation est vraie si toutes les affirmations liées sont vraies.

OR L'affirmation est vraie si au moins une des affirmations liées est vraie.

NOT L'affirmation est vraie si elle est fausse, et vice versa.

XOR L'affirmation est vraie si une seule des affirmations liées est vraie.

1 / 6

Opérateur logique AND (et)

Avec l'opérateur logique "et" (« and », en anglais),
une affirmation est vraie, si toutes les affirmations liées par cet opérateur sont vraies.

Exemple en langue humaine :

10 est plus grand que 5 et 50 est plus petit que 100

Affirmation 1 Opérateur Affirmation 2

Dans cet exemple, les deux affirmations liées sont vraies,
donc l'affirmation finale est vraie.

Une transcription possible en Python de cet exemple pourrait être :

>>> 10 > 5 and 50 < 100
True

Comme nous pouvons le voir, en Python l'opérateur "et" s'écrit and .

Mais que se passe-t-il si la première affirmation est vraie, mais que la seconde est fausse ? Ou inversement ?
Heureusement, il est possible de lister toutes les combinaisons réalisables avec un opérateur logique dans un
tableau :

Affirmation A Affirmation B A and B

Faux Faux Faux

Faux Vrai Faux

Vrai Faux Faux

Vrai Vrai Vrai

← Ce tableau est appelé table de
vérité. Un concept développé par
George Boole au XIXe siècle.

Chaque opérateur logique
dispose ainsi de sa propre table
de vérité1.

 Exercice 1➤

Analysez les affirmations suivantes, puis déterminez leurs valeurs à Vrai ou Faux :

Affirmation Valeur (à compléter) Affirmation Valeur (à compléter)

True and False 1 >= 1 and 1 > 1

False and True 0 > 2 and 2 > 1

False and False -1 < 0 and 1 > 0

True and True True and True and False

1 > 2 and 2 > 1 1 > 0 and 0 < 2 and 1 == 1

1 Ces tables sont couramment utilisées en mathématiques (logique propositionnelle), en électronique (porte logique) et en
informatique (tests).

2 / 6

Opérateur logique OR (ou)

Avec l'opérateur logique "ou" (« or », en anglais),
une affirmation est vraie, si au moins une des affirmations liées par cet opérateur est vraie.

Exemple en langue humaine :

10 est plus petit que 5 ou 50 est plus petit que 100

Affirmation 1 Opérateur Affirmation 2

Dans cet exemple, l'une des deux affirmations liées est vraie,
donc l'affirmation finale est vraie.

Une transcription possible en Python de cet exemple pourrait être :

>>> 10 < 5 or 50 < 100
True

Comme nous pouvons le voir, en Python l'opérateur "ou" s'écrit or .

Voici la table de vérité de l'opérateur logique "ou" :

Affirmation A Affirmation B A or B

Faux Faux Faux

Faux Vrai Vrai

Vrai Faux Vrai

Vrai Vrai Vrai

 Exercice 2➤

Analysez les affirmations suivantes, puis déterminez leurs valeurs à Vrai ou Faux :

Affirmation Valeur (à compléter) Affirmation Valeur (à compléter)

False or False 1 >= 1 and 1 > 1

True or True 1 > 0 or 1 == 2

False or True True or 1 > 0

True or False True or False or False

0 < 1 or 1 > 0 1 < 0 or 0 > 1 or 1 > 0

 Exercice 3➤

Est-ce que le bloc de code sera exécuté après la condition Python if 1 > 0 or 0 < 1: ?

3 / 6

Opérateur logique NOT (« n'est pas »)

Avec l'opérateur logique "n'est pas" — ou opérateur "non", ou opérateur "de négation" (« not », en anglais),
une affirmation devient vraie, si elle est fausse. Et une affirmation devient fausse, si elle est vraie.

Exemple en langue humaine :

négation 5 est plus petit que 10

Opérateur Affirmation

Dans cet exemple, l'affirmation est vraie,
donc l'affirmation finale est fausse.

Une transcription possible en Python de cet exemple pourrait être :

>>> not 5 < 10
False

Comme nous pouvons le voir, en Python l'opérateur "de négation" s'écrit not .

Voici la table de vérité de l'opérateur logique "not" :

Affirmation A not A

Faux Vrai

Vrai Faux

 Exercice 4➤

Analysez les affirmations suivantes, puis déterminez leurs valeurs à Vrai ou Faux.

Bien penser à résoudre d'abord l'affirmation entre les parenthèses.

Affirmation Valeur (à compléter) Affirmation Valeur (à compléter)

not False not(False or False)

not True not(0 > 2 and 2 > 1)

not(True or False) not(1 > 2 and 2 > 1)

not(True or True) not(1 >= 1 and 1 > 1)

not(False or True) True and not False

Note : l'opérateur logique NOT a une priorité plus haute que les autres opérateurs.

4 / 6

Opérateur logique XOR (ou exclusif)

Avec l'opérateur logique "ou exclusif" (« xor », en anglais),
une affirmation est vraie, si uniquement une et une seule des affirmations liées par cet opérateur est vraie.

Exemple en langue humaine :

10 < 5 ou exclusif 50 < 100 ou exclusif 2 > 1

Affirmation 1 Opérateur Affirmation 2 Opérateur Affirmation 3

Dans cet exemple, deux des trois affirmations liées sont vraies,
donc l'affirmation finale est fausse.

Une transcription possible en Python de cet exemple pourrait être :

>>> (10 < 5) ^ (50 < 100) ^ (2 > 1)
False

Comme nous pouvons le voir, en Python l'opérateur "ou exclusif" s'écrit xor .

Voici la table de vérité de l'opérateur logique "ou exclusif" :

Affirmation A Affirmation B A xor B

Faux Faux Faux

Faux Vrai Vrai

Vrai Faux Vrai

Vrai Vrai Faux

 Exercice 5➤

Analysez les affirmations suivantes, puis déterminez leurs valeurs à Vrai ou Faux :

Affirmation Valeur (à compléter) Affirmation Valeur (à compléter)

False ^ False (1 >= 1) ^ (1 > 1)

True ^ True (1 > 0) ^ (1 == 2)

False ^ True True ^ (1 > 0)

True ^ False True ^ False ^ False

(0 < 1) ^ (1 > 0) (1 < 0) ^ (0 > 1) ^ (1 > 0)

5 / 6

 Priorités des opérateurs logiques⚠️

L'ordre de priorité des opérateurs est, du plus prioritaire au moins prioritaire : NOT > AND > XOR > OR

Et l'usage de parenthèses sert à modifier cet ordre et forcer une autre évaluation.

 Exercice 6➤

Observez les exemples de code Python ci-dessous, puis déterminez quel(s) message(s) sera (seront) affiché(s).
Si rien n'est affiché selon vous, écrire simplement le mot « rien ».

N° Code Python Message(s) affiché(s) (à compléter)

1 age = 10
taille = 1.55
if age > 7 and age < 14 and taille > 1.25 :
 print('Kart 160cc')

2 age = 10
taille = 1.25
if age > 7 and age < 14 and taille > 1.25 :
 print('Kart 160cc')

3 train = True
voiture = False
if train or voiture:
 print('Arrivé(e) à destination')

4 vrai = True
if vrai == True:
 vrai = False
if not vrai == True:
 print('post-verité')

5 cb = True
virement = True
if cb ^ virement:
 print('Paiement effectué')
else:
 print('Paiement annulé')

6 moy = 14
parascol = False
benevol = 50
if moy > 14 and parascol == True or benevol > 40:
 print('Bourse accordée')
else:
 print('Bourse refusée')

7 auth = False
co = True
sms = True
app = True
if (auth == True and co == True) or (sms ^ app):
 print('Streaming OK')
else:
 print('Forbidden')

8 print(True or False and False)

9 print((True or False) and False)

6 / 6

	NSI 1re — Opérateurs logiques
	Opérateurs logiques
	Liste des opérateurs logiques

	Opérateur logique AND (et)
	➤ Exercice 1

	Opérateur logique OR (ou)
	➤ Exercice 2
	➤ Exercice 3

	Opérateur logique NOT (« n'est pas »)
	➤ Exercice 4

	Opérateur logique XOR (ou exclusif)
	➤ Exercice 5
	⚠️ Priorités des opérateurs logiques
	➤ Exercice 6

