
Nom : Prénom : Classe :

NSI 1re — Boucle non bornée (boucle while)

Objectifs :
- Savoir identifier et utiliser une boucle non bornée.
- Savoir créer une boucle bornée.

Introduction

Nous avons déjà parlé des boucles bornées1 — également appelées boucles for — une structure qui permet de
répéter une série d’instructions un nombre de fois déterminé à l’avance.

Dans ce cours, nous allons aborder un autre type de boucle : la boucle non bornée — aussi appelée boucle while.
Une boucle non bornée est une structure qui permet de répéter une série d'instructions tant qu'une affirmation
est vraie.

Prenons tout de suite un exemple de boucle non bornée dans la vie de tous les jours :

Tant que je n'ai pas retrouvé mes clés :

 → Je cherche dans mes poches.
 → Je cherche sous les sièges de la voiture.
 → Je cherche dans mon sac.
 → Je cherche sur mon bureau.

Dans cet exemple, nous avons une affirmation « je n'ai pas retrouvé mes clés »
arrêtons-nous un instant sur cette affirmation, qui pourrait être réécrite en « clés trouvées == Faux »

Et tant que cette affirmation est vraie, le programme exécute les instructions contenue dans la boucle : je
cherche dans mes poches, je cherche sous les sièges de la voiture, etc.

Voici à présent comment nous pourrions transcrire cet exemple en langage Python :

1

2

3

4

5

6

cles_trouvees = False

while cles_trouvees == False:

 print('Je cherche dans mes poches')

 print('Je cherche sous les sièges')

 print('Je cherche dans mon sac')

 print('Je cherche sur mon bureau')

Notons qu'une boucle non bornée s'écrit avec while suivi d'une affirmation, ici cles_trouvees == False

Tant que cette affirmation est vraie (donc ici que cles_trouvees vaut False),
alors le bloc d'instructions contenu dans la boucle est exécuté.

Observons également ici que le bloc d'instructions sera exécuté un nombre infini de fois…

1 Voir le cours « Boucle bornée (boucle for) »
ainsi que le cours « Boucle bornée (boucle for) #2 : utilisations de range() ».

1 / 4

Spécificités d'une boucle non bornée

Généralement, une boucle non bornée, possède :
- Une affirmation/condition de départ : ce qui permet à la boucle d'effectuer au moins une itération.
- Une condition d'arrêt : ce qui permet à la boucle de se terminer.

S'il n'existe pas de condition d'arrêt, alors c'est une boucle qui ne se termine jamais,
on parle alors d'une boucle infinie !

Ce serait mentir que de dire que nous n'avons jamais été la victime d'une boucle infinie dans un de
ses programmes ! La boucle infinie est le bug numéro un, lié à une boucle non bornée !

 Exercice 1 : enquêter➤

Observez chacune des boucles non bornées ci-dessous, puis déterminez-en :
- La condition de départ : est-elle présente, oui ou non ? Justifiez.
- La condition d'arrêt : est-elle présente, oui ou non ? Justifiez.

N° Code Python Condition de départ Condition d'arrêt

1

age = 10

while age < 18:

 print('mineur(e)')

 age = age + 1

La boucle se lance car age
vaut 10 et la condition de
départ est age < 18

Condition d'arrêt valide car
age finit par atteindre 18, ce
qui stoppe la boucle.

2

clients = 0

while clients < 50:

 print('boutique fermée')

La boucle se lance car
clients vaut 0 et la
condition de départ est
clients < 50

Condition d'arrêt non valide
car la valeur de clients ne
change pas dans le bloc
d'instruction de la boucle.

3

objets = 3

while objets == 0:

 print('panier vide')

La boucle ne se lance pas
car objets vaut 3 et la
condition de départ est
objets == 0

Condition d'arrêt non valide
car la valeur de objets ne
change pas dans le bloc
d'instruction de la boucle.

4

age = 0

while age < 18:

 age = int(input('Âge ? '))

print('majeur(e)')

La boucle se lance car age
vaut 0 et la condition de
départ est age < 18

Condition d'arrêt valide,
dans la mesure où on estime
que l'utilisatrice / utilisateur
finira par saisir une valeur >
18

 Exercice 2 : déduire➤

Quel est le risque principal des programmes précédents n'ayant pas de condition d'arrêt valable ?

Le risque principal est d'avoir un programme qui ne s'arrête jamais, à cause d'une boucle dite infinie.

2 / 4

 Exercice 3 : débugger➤

Le programme suivant contient une boucle infinie.
Écrivez en dessous votre proposition de modification de son bloc d'instructions permettant de le "réparer".

1

2

3

a = 0

while a < 10:

 print(a)

a = 0
while a < 10 :
 print(a)
 a = a + 1 # ou encore : a += 1

 Exercice 4 : conversion d'une boucle bornée en boucle non bornée➤

Il est possible de s'amuser à convertir une boucle bornée (boucle for) en boucle non bornée (boucle while).

Par exemple :

Python, en "mode" boucle bornée Python, en "mode" boucle non bornée

for i in range(5):

 print(i)

i = 0

while i < 5:

 print(i)

 i = i + 1

Comme nous le voyons, le programme contient bien plus de lignes en "mode" boucle non bornée.
C'est que l'intérêt d'une boucle non bornée est ailleurs, nous y reviendrons juste après.
En attendant, entraînons-nous à effectuer quelques autres conversions :

Python, en "mode" boucle bornée Python, en "mode" boucle non bornée (à compléter)

for age in range(1, 10):

 print(age)
age = 1

while age < 10 :

 print(age)

 age = age + 1 # ou age += 1

for e in range(3, -1, -1):

 print(e)

print('Partez!')

e = 3

while e > -1 :

 print(e)

 e = e - 1 # ou e -= 1

print('Partez!')

3 / 4

Intérêt d'une boucle non bornée

Une boucle non bornée est utile dès que le nombre de répétitions n’est pas connu à l’avance ou dépend de
données externes (saisie utilisateur, arrivée d’un événement, convergence d’un calcul, etc.), alors qu’une boucle
bornée est adaptée quand on sait dès le départ combien de fois répéter le bloc d’instructions.

Ainsi, la boucle non bornée est plus adaptée aux situations d’attente : lecture jusqu’à la fin d'un fichier,
demandes successives à l’utilisatrice ou utilisateur, boucle principale d’un jeu, etc.

Prenons un exemple :

Nous souhaitons créer un programme dans lequel l'utilisatrice/utilisateur doit presser la touche x pour quitter.
En d'autres termes, tant que la touche x n'est pas pressée, on lui demande une saisie (avec input).

Voici une implémentation Python possible :

1

2

3

reponse = False

while reponse != 'x':

 reponse = input('? ')

Dans ce programme, tant que la variable reponse ne contient pas 'x' (ligne 2),
alors on stocke une saisie utilisatrice/utilisateur dans reponse (ligne 3).

 Exercice 5 : créer une boucle non bornée➤

Créez un programme dans lequel on demande à l'utilisatrice/utilisateur un nombre positif.
Tant que ce nombre n'est pas positif (supérieur à 0), le programme pose la même question.

nbre = -1

while nbre < 0 :
 nbre = int(input('Saisir un nombre positif svp ? '))

Pour aller plus loin

Il est possible de récupérer un nombre entier aléatoire en Python, grâce au code suivant :

Import de la fonction randint()
depuis le module «random» de Python
from random import randint

Entier aléatoire de 1 (inclus) à 6 (inclus)
a = randint(1, 6)

Sur une feuille à part, créez le programme dans lequel il faut deviner le nombre aléatoire compris entre 1 (inclus)
et 6 (inclus) choisi par l'ordinateur. Tant que l'utilisatrice/utilisateur n'a pas trouvé ce nombre aléatoire, le
programme lui demande un essai.

4 / 4

Une correction possible :

from random import randint
ordi = randint(1, 6)
humain = 0
while humain != ordi:
 humain = int(input('Nbre entre 1 et 6 svp ? '))
print('Bravo!')

Une correction possible :

from random import randint
ordi = randint(1, 6)
humain = 0
while humain != ordi:
 humain = int(input('Nbre entre 1 et 6 svp ? '))
print('Bravo!')

	NSI 1re — Boucle non bornée (boucle while)
	Introduction
	Spécificités d'une boucle non bornée
	➤ Exercice 1 : enquêter
	➤ Exercice 2 : déduire
	➤ Exercice 3 : débugger
	➤ Exercice 4 : conversion d'une boucle bornée en boucle non bornée

	Intérêt d'une boucle non bornée
	➤ Exercice 5 : créer une boucle non bornée

	Pour aller plus loin

